The Centralizer of a Nilpotent Section

نویسنده

  • GEORGE J. MCNINCH
چکیده

Let F be an algebraically closed field and let G be a semisimple F-algebraic group for which the characteristic of F is very good. If X ∈ Lie(G) = Lie(G)(F) is a nilpotent element in the Lie algebra of G, and if C is the centralizer in G of X, we show that (i) the root datum of a Levi factor of C, and (ii) the component group C/Co both depend only on the Bala-Carter label of X; i.e. both are independent of very good characteristic. The result in case (ii) depends on the known case when G is (simple and) of adjoint type. The proofs are achieved by studying the centralizer C of a nilpotent section X in the Lie algebra of a suitable semisimple group scheme over a Noetherian, normal, local ring A. When the centralizer of X is equidimensional on Spec(A), a crucial result is that locally in the étale topology there is a smoothA-subgroup scheme L of C such that Lt is a Levi factor of Ct for each t ∈ Spec(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Centralizer of the Sum of Commuting Nilpotent Elements

Let X and Y be commuting nilpotent K-endomorphisms of a vector space V , where K is a field of characteristic p ≥ 0. If F = K(t) is the field of rational functions on the projective line P1/K , consider the K(t)-endomorphism A = X+ tY of V . If p = 0, or if A = 0, we show here that X and Y are tangent to the unipotent radical of the centralizer of A in GL(V ). For all geometric points (a : b) o...

متن کامل

On solubility of groups with finitely many centralizers

For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...

متن کامل

Component Groups of Centralizers of Nilpotents in Complex Symmetric Space Donald R. King

Let G be the adjoint group of a simple Lie algebra g, and let KC ! Aut(pC) be the complexi ed isotropy representation at the identity coset of the corresponding symmetric space. If e 2 pC is nilpotent, we consider the centralizer of e in KC. We show that the conjugacy classes of the component group of this centralizer can be described in terms generalizing the Bala-Carter classi cation of nilpo...

متن کامل

. A G ] 3 A pr 1 99 9 Nilpotent pairs , dual pairs , and sheets

Recently, V.Ginzburg introduced the notion of a principal nilpotent pair (= pn-pair) in a semisimple Lie algebra g [Gi99]. It is a double counterpart of the notion of a regular nilpotent element in g. A pair e = (e1, e2) ∈ g × g is called nilpotent, if [e1, e2] = 0 and there exists a pair h = (h1, h2) of semisimple elements such that [h1, h2] = 0, [hi, ej ] = δijej (i, j ∈ {1, 2}). A pn-pair e ...

متن کامل

Elementary Invariants for Centralizers of Nilpotent Matrices

We construct an explicit set of algebraically independent generators for the center of the universal enveloping algebra of the centralizer of a nilpotent matrix in the general linear Lie algebra over a field of characteristic zero. In particular, this gives a new proof of the freeness of the center, a result first proved by Panyushev, Premet and Yakimova.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006